科目コード 203820 学習教育 自動制御 [自制] 後期 高野 明夫 講義 学科 科目 目標 E4 担当 学年 分類 必修 1単位 B - 2 **TAKANO** Akio Automatic Control 古典制御理論について教授する。まず、ラプラス変換に関する基礎知識を復習しつつ、伝達関数に よるシステム表現について学習する。次に、周波数領域による解析法を習得する。 具体的にはベクト ル軌跡やボート線図に関する基礎知識を学んだのち、ナイキストの安定判別法を用いて、システムの 概要 安定性判別を周波数領域で行う 最後に、位相余裕等を指針としてシステムの設計を周波数領域で 行なう なお、高次系については2次系による近似に限定する。 科目目標 (1)システム表現の相互変換の理解、(2)ラプラス変換を用いた過渡応答の計算ができること、(3)周 (到達目標) 波数領域での安定性の解析と設計ができること。 教科書 制御基礎理論 '古典から現代まで」中野、美多共著 昭晃堂 器材等 評価の基準と 定期試験の結果に出席状況を加味して評価する。 方法 関連科目 数学,応用数学,回路理論、電気機器 授業計画 第1回 ブロック線図の定義 第 2回 ブロック線図の等価変換 第3回 ラプラス変換と展開定理 最終値の定理と初期値の定理、常微分方程式をラプラス変換を用いて解く 第4回 第5回 伝達関数をラプラス変換を用いて定義する フィードバック制御系のブロック線図 第6回 フィードバック制御系の特性 第個 第8回 定期試験 ベクトル軌跡 第9回 第10回 ボート線図 安定判別法 (ナイキストの安定判別法) 第11回 第12回 制御系の安定度(位相余裕とゲイン余裕) 第13回 過渡特性補償の考え方 遅れ補償法と進み補償法 第14回 第15回 定期試験

オフィスア	月曜日の午前中に、比較的質問に対応できる。木曜日と金曜日の午後は実験で塞がっていることが
ワー	多い。
備 考	本授業に関する質問は、次のメールアドレスでも受け付ける takano@numazu-ct.ac.jp